3. Quickstart¶
Since pmdarima is intended to replace R’s auto.arima
, the interface is
designed to be quick to learn and easy to use, even for R users making the switch.
Common functions and tools are elevated to the top-level of the package:
import pmdarima as pm
# Create an array like you would in R
x = pm.c(1, 2, 3, 4, 5, 6, 7)
# Compute an auto-correlation like you would in R:
pm.acf(x)
# Plot an auto-correlation:
pm.plot_acf(x)
3.1. Auto-ARIMA example¶
Here’s a quick example of how we can fit an auto_arima
with pmdarima:
import numpy as np
import pmdarima as pm
from pmdarima.datasets import load_wineind
# this is a dataset from R
wineind = load_wineind().astype(np.float64)
# fit stepwise auto-ARIMA
stepwise_fit = pm.auto_arima(wineind, start_p=1, start_q=1,
max_p=3, max_q=3, m=12,
start_P=0, seasonal=True,
d=1, D=1, trace=True,
error_action='ignore', # don't want to know if an order does not work
suppress_warnings=True, # don't want convergence warnings
stepwise=True) # set to stepwise
It’s easy to examine your model fit results. Simply use the summary
[1] method:
>>> stepwise_fit.summary()
<class 'statsmodels.iolib.summary.Summary'>
"""
SARIMAX Results
============================================================================================
Dep. Variable: y No. Observations: 176
Model: SARIMAX(0, 1, 2)x(0, 1, [1], 12) Log Likelihood -1528.766
Date: Wed, 15 Jun 2022 AIC 3065.533
Time: 12:38:14 BIC 3077.908
Sample: 0 HQIC 3070.557
- 176
Covariance Type: opg
==============================================================================
coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
ma.L1 -0.5756 0.041 -13.952 0.000 -0.656 -0.495
ma.L2 -0.1065 0.048 -2.224 0.026 -0.200 -0.013
ma.S.L12 -0.3848 0.054 -7.156 0.000 -0.490 -0.279
sigma2 7.866e+06 7.01e+05 11.228 0.000 6.49e+06 9.24e+06
===================================================================================
Ljung-Box (L1) (Q): 2.84 Jarque-Bera (JB): 18.05
Prob(Q): 0.09 Prob(JB): 0.00
Heteroskedasticity (H): 1.17 Skew: -0.55
Prob(H) (two-sided): 0.56 Kurtosis: 4.21
===================================================================================
Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).
[1] The summary output was generated using the following versions:
>>> import pmdarima as pm
>>> pm.show_versions()
System:
python: 3.9.7 (default, Nov 10 2021, 08:50:17) [Clang 13.0.0 (clang-1300.0.29.3)]
executable: /Users/asmith/venv/bin/python
machine: macOS-11.6.6-x86_64-i386-64bit
Python dependencies:
pip: 21.2.3
setuptools: 57.4.0
sklearn: 1.1.1
statsmodels: 0.13.2
numpy: 1.22.4
scipy: 1.8.1
Cython: 0.29.30
pandas: 1.4.2
joblib: 1.1.0
pmdarima: 1.8.5