pmdarima.preprocessing
.BoxCoxEndogTransformer¶
-
class
pmdarima.preprocessing.
BoxCoxEndogTransformer
(lmbda=None, lmbda2=0, neg_action='raise', floor=1e-16)[source][source]¶ Apply the Box-Cox transformation to an endogenous array
The Box-Cox transformation is applied to non-normal data to coerce it more towards a normal distribution. It’s specified as:
(((y + lam2) ** lam1) - 1) / lam1, if lmbda != 0, else log(y + lam2)
Parameters: lmbda : float or None, optional (default=None)
The lambda value for the Box-Cox transformation, if known. If not specified, it will be estimated via MLE.
lmbda2 : float, optional (default=0.)
The value to add to
y
to make it non-negative. If, after addinglmbda2
, there are still negative values, a ValueError will be raised.neg_action : str, optional (default=”raise”)
How to respond if any values in
y <= 0
after addinglmbda2
. One of (‘raise’, ‘warn’, ‘ignore’). If anything other than ‘raise’, values <= 0 will be truncated to the value offloor
.floor : float, optional (default=1e-16)
A positive value that truncate values to if there are values in
y
that are zero or negative andneg_action
is not ‘raise’. Note that if values are truncated, invertibility will not be preserved, and the transformed array may not be perfectly inverse-transformed.Methods
fit
(y[, X])Fit the transformer fit_transform
(y[, X])Fit and transform the arrays get_params
([deep])Get parameters for this estimator. inverse_transform
(y[, X])Inverse transform a transformed array set_params
(**params)Set the parameters of this estimator. transform
(y[, X])Transform the new array -
__init__
(lmbda=None, lmbda2=0, neg_action='raise', floor=1e-16)[source][source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fit
(y, X=None)[source][source]¶ Fit the transformer
Learns the value of
lmbda
, if not specified in the constructor. If defined in the constructor, is not re-learned.Parameters: y : array-like or None, shape=(n_samples,)
The endogenous (time-series) array.
X : array-like or None, shape=(n_samples, n_features), optional
The exogenous array of additional covariates. Not used for endogenous transformers. Default is None, and non-None values will serve as pass-through arrays.
-
fit_transform
(y, X=None, **kwargs)[source]¶ Fit and transform the arrays
Parameters: y : array-like or None, shape=(n_samples,)
The endogenous (time-series) array.
X : array-like or None, shape=(n_samples, n_features), optional
The exogenous array of additional covariates.
**kwargs : keyword args
Keyword arguments required by the transform function.
-
get_params
(deep=True)[source]¶ Get parameters for this estimator.
Parameters: deep : bool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
-
inverse_transform
(y, X=None)[source][source]¶ Inverse transform a transformed array
Inverse the Box-Cox transformation on the transformed array. Note that if truncation happened in the
transform
method, invertibility will not be preserved, and the transformed array may not be perfectly inverse-transformed.Parameters: y : array-like or None, shape=(n_samples,)
The transformed endogenous (time-series) array.
X : array-like or None, shape=(n_samples, n_features), optional
The exogenous array of additional covariates. Not used for endogenous transformers. Default is None, and non-None values will serve as pass-through arrays.
Returns: y : array-like or None
The inverse-transformed y array
X : array-like or None
The inverse-transformed X array
-
set_params
(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Parameters: **params : dict
Estimator parameters.
Returns: self : object
Estimator instance.
-
transform
(y, X=None, **kwargs)[source][source]¶ Transform the new array
Apply the Box-Cox transformation to the array after learning the lambda parameter.
Parameters: y : array-like or None, shape=(n_samples,)
The endogenous (time-series) array.
X : array-like or None, shape=(n_samples, n_features), optional
The exogenous array of additional covariates. Not used for endogenous transformers. Default is None, and non-None values will serve as pass-through arrays.
Returns: y_transform : array-like or None
The Box-Cox transformed y array
X : array-like or None
The X array
-