pmdarima.utils.plot_acf¶
- 
pmdarima.utils.plot_acf(series, ax=None, lags=None, alpha=None, use_vlines=True, unbiased=False, fft=True, title='Autocorrelation', zero=True, vlines_kwargs=None, show=True, **kwargs)[source][source]¶
- Plot a series’ auto-correlation as a line plot. - A wrapper method for the statsmodels - plot_acfmethod.- Parameters: - series : array-like, shape=(n_samples,) - The series or numpy array for which to plot an auto-correlation. - ax : Matplotlib AxesSubplot instance, optional - If given, this subplot is used to plot in instead of a new figure being created. - lags : int, array-like or None, optional (default=None) - int or Array of lag values, used on horizontal axis. Uses np.arange(lags) when lags is an int. If not provided, - lags=np.arange(len(corr))is used.- alpha : scalar, optional (default=None) - If a number is given, the confidence intervals for the given level are returned. For instance if alpha=.05, 95 % confidence intervals are returned where the standard deviation is computed according to Bartlett’s formula. If None, no confidence intervals are plotted. - use_vlines : bool, optional (default=True) - If True, vertical lines and markers are plotted. If False, only markers are plotted. The default marker is ‘o’; it can be overridden with a - markerkwarg.- unbiased : bool, optional (default=False) - If True, then denominators for autocovariance are n-k, otherwise n - fft : bool, optional (default=True) - If True, computes the ACF via FFT. - title : str, optional (default=’Autocorrelation’) - Title to place on plot. Default is ‘Autocorrelation’ - zero : bool, optional (default=True) - Flag indicating whether to include the 0-lag autocorrelation. Default is True. - vlines_kwargs : dict, optional (default=None) - Optional dictionary of keyword arguments that are passed to vlines. - show : bool, optional (default=True) - Whether to show the plot after it’s been created. If not, will return the plot as an Axis object instead. - **kwargs : kwargs, optional - Optional keyword arguments that are directly passed on to the Matplotlib - plotand- axhlinefunctions.- Returns: - plt : Axis or None - If - showis True, does not return anything. If False, returns the Axis object.- Notes - This method will only show the plot if - show=True(which is the default behavior). To simply get the axis back (say, to add to another canvas), use- show=False.- Examples - >>> plot_acf([1, 2, 3], show=False) <matplotlib.figure.Figure object at 0x122fab4e0>