pmdarima.preprocessing
.LogEndogTransformer¶
-
class
pmdarima.preprocessing.
LogEndogTransformer
(lmbda=0, neg_action='raise', floor=1e-16)[source][source]¶ Apply a log transformation to an endogenous array
When
y
is your endogenous array, the log transform islog(y + lmbda)
Parameters: lmbda : float, optional (default=0.)
The value to add to
y
to make it non-negative. If, after addinglmbda
, there are still negative values, a ValueError will be raised.neg_action : str, optional (default=”raise”)
How to respond if any values in
y <= 0
after addinglmbda
. One of (‘raise’, ‘warn’, ‘ignore’). If anything other than ‘raise’, values <= 0 will be truncated to the value offloor
.floor : float, optional (default=1e-16)
A positive value that truncate values to if there are values in
y
that are zero or negative andneg_action
is not ‘raise’. Note that if values are truncated, invertibility will not be preserved, and the transformed array may not be perfectly inverse-transformed.Methods
fit
(y[, exogenous])Fit the transformer fit_transform
(y[, exogenous])Fit and transform the arrays get_params
([deep])Get parameters for this estimator. inverse_transform
(y[, exogenous])Inverse transform a transformed array set_params
(**params)Set the parameters of this estimator. transform
(y[, exogenous])Apply the log transform to the array -
__init__
(lmbda=0, neg_action='raise', floor=1e-16)[source][source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fit
(y, exogenous=None)[source][source]¶ Fit the transformer
Must be called before
transform
.Parameters: y : array-like or None, shape=(n_samples,)
The endogenous (time-series) array.
exogenous : array-like or None, shape=(n_samples, n_features), optional
The exogenous array of additional covariates. Not used for endogenous transformers. Default is None, and non-None values will serve as pass-through arrays.
-
fit_transform
(y, exogenous=None, **transform_kwargs)[source]¶ Fit and transform the arrays
Parameters: y : array-like or None, shape=(n_samples,)
The endogenous (time-series) array.
exogenous : array-like or None, shape=(n_samples, n_features), optional
The exogenous array of additional covariates.
**transform_kwargs : keyword args
Keyword arguments required by the transform function.
-
get_params
(deep=True)[source]¶ Get parameters for this estimator.
Parameters: deep : bool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
-
inverse_transform
(y, exogenous=None)[source][source]¶ Inverse transform a transformed array
Inverse the log transformation on the transformed array. Note that if truncation happened in the
transform
method, invertibility will not be preserved, and the transformed array may not be perfectly inverse-transformed.Parameters: y : array-like or None, shape=(n_samples,)
The transformed endogenous (time-series) array.
exogenous : array-like or None, shape=(n_samples, n_features), optional
The exogenous array of additional covariates. Not used for
endogenous transformers. Default is None, and non-None values will
serve as pass-through arrays.
Returns: y : array-like or None
The inverse-transformed y array
exogenous : array-like or None
The inverse-transformed exogenous array
-
set_params
(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Parameters: **params : dict
Estimator parameters.
Returns: self : object
Estimator instance.
-
transform
(y, exogenous=None, **transform_kwargs)[source][source]¶ Apply the log transform to the array
Parameters: y : array-like or None, shape=(n_samples,)
The endogenous (time-series) array.
exogenous : array-like or None, shape=(n_samples, n_features), optional
The exogenous array of additional covariates. Not used for endogenous transformers. Default is None, and non-None values will serve as pass-through arrays.
Returns: y_transform : array-like or None
The log transformed y array
exogenous : array-like or None
The exog array
-