Dataset loading¶
In this example, we demonstrate pyramid’s built-in toy datasets that can be used for benchmarking or experimentation. Pyramid has several built-in datasets that exhibit seasonality, non-stationarity, and other time series nuances.
Out:
Lynx array:
[ 269 321 585 871 1475 2821 3928 5943 4950 2577 523 98 184 279
409 2285 2685 3409 1824 409 151 45 68 213 546 1033 2129 2536
957 361 377 225 360 731 1638 2725 2871 2119 684 299 236 245
552 1623 3311 6721 4254 687 255 473 358 784 1594 1676 2251 1426
756 299 201 229 469 736 2042 2811 4431 2511 389 73 39 49
59 188 377 1292 4031 3495 587 105 153 387 758 1307 3465 6991
6313 3794 1836 345 382 808 1388 2713 3800 3091 2985 3790 674 81
80 108 229 399 1132 2432 3574 2935 1537 529 485 662 1000 1590
2657 3396]
Lynx series head:
1821 269
1822 321
1823 585
1824 871
1825 1475
dtype: int64
print(__doc__)
# Author: Taylor Smith <taylor.smith@alkaline-ml.com>
import pyramid as pm
# #############################################################################
# You can load the datasets via load_<name>
lynx = pm.datasets.load_lynx()
print("Lynx array:")
print(lynx)
# You can also get a series, if you rather
print("\nLynx series head:")
print(pm.datasets.load_lynx(as_series=True).head())
# Several other datasets:
heart_rate = pm.datasets.load_heartrate()
wineind = pm.datasets.load_wineind()
woolyrnq = pm.datasets.load_woolyrnq()
Total running time of the script: ( 0 minutes 0.002 seconds)