Dataset loading¶
In this example, we demonstrate pyramid’s built-in toy datasets that can be used for benchmarking or experimentation. Pyramid has several built-in datasets that exhibit seasonality, non-stationarity, and other time series nuances.
Out:
Lynx array:
[ 269. 321. 585. 871. 1475. 2821. 3928. 5943. 4950. 2577. 523. 98.
184. 279. 409. 2285. 2685. 3409. 1824. 409. 151. 45. 68. 213.
546. 1033. 2129. 2536. 957. 361. 377. 225. 360. 731. 1638. 2725.
2871. 2119. 684. 299. 236. 245. 552. 1623. 3311. 6721. 4254. 687.
255. 473. 358. 784. 1594. 1676. 2251. 1426. 756. 299. 201. 229.
469. 736. 2042. 2811. 4431. 2511. 389. 73. 39. 49. 59. 188.
377. 1292. 4031. 3495. 587. 105. 153. 387. 758. 1307. 3465. 6991.
6313. 3794. 1836. 345. 382. 808. 1388. 2713. 3800. 3091. 2985. 3790.
674. 81. 80. 108. 229. 399. 1132. 2432. 3574. 2935. 1537. 529.
485. 662. 1000. 1590. 2657. 3396.]
Lynx series head:
1821 269.0
1822 321.0
1823 585.0
1824 871.0
1825 1475.0
dtype: float64
print(__doc__)
# Author: Taylor Smith <taylor.smith@alkaline-ml.com>
import pmdarima as pm
# #############################################################################
# You can load the datasets via load_<name>
lynx = pm.datasets.load_lynx()
print("Lynx array:")
print(lynx)
# You can also get a series, if you rather
print("\nLynx series head:")
print(pm.datasets.load_lynx(as_series=True).head())
# Several other datasets:
air_passengers = pm.datasets.load_airpassengers()
austres = pm.datasets.load_austres()
heart_rate = pm.datasets.load_heartrate()
wineind = pm.datasets.load_wineind()
woolyrnq = pm.datasets.load_woolyrnq()
Total running time of the script: ( 0 minutes 0.003 seconds)