Source code for pmdarima.preprocessing.endog.boxcox
# -*- coding: utf-8 -*-
from scipy import stats
import numpy as np
import warnings
from ...compat import check_is_fitted, pmdarima as pm_compat
from .base import BaseEndogTransformer
__all__ = ['BoxCoxEndogTransformer']
[docs]class BoxCoxEndogTransformer(BaseEndogTransformer):
r"""Apply the Box-Cox transformation to an endogenous array
The Box-Cox transformation is applied to non-normal data to coerce it more
towards a normal distribution. It's specified as::
(((y + lam2) ** lam1) - 1) / lam1, if lmbda != 0, else
log(y + lam2)
Parameters
----------
lmbda : float or None, optional (default=None)
The lambda value for the Box-Cox transformation, if known. If not
specified, it will be estimated via MLE.
lmbda2 : float, optional (default=0.)
The value to add to ``y`` to make it non-negative. If, after adding
``lmbda2``, there are still negative values, a ValueError will be
raised.
neg_action : str, optional (default="raise")
How to respond if any values in ``y <= 0`` after adding ``lmbda2``.
One of ('raise', 'warn', 'ignore'). If anything other than 'raise',
values <= 0 will be truncated to the value of ``floor``.
floor : float, optional (default=1e-16)
A positive value that truncate values to if there are values in ``y``
that are zero or negative and ``neg_action`` is not 'raise'. Note that
if values are truncated, invertibility will not be preserved, and the
transformed array may not be perfectly inverse-transformed.
"""
[docs] def __init__(self, lmbda=None, lmbda2=0, neg_action="raise", floor=1e-16):
self.lmbda = lmbda
self.lmbda2 = lmbda2
self.neg_action = neg_action
self.floor = floor
[docs] def fit(self, y, X=None, **kwargs): # TODO: kwargs go away
"""Fit the transformer
Learns the value of ``lmbda``, if not specified in the constructor.
If defined in the constructor, is not re-learned.
Parameters
----------
y : array-like or None, shape=(n_samples,)
The endogenous (time-series) array.
X : array-like or None, shape=(n_samples, n_features), optional
The exogenous array of additional covariates. Not used for
endogenous transformers. Default is None, and non-None values will
serve as pass-through arrays.
"""
lam1 = self.lmbda
lam2 = self.lmbda2
# Temporary shim until we remove `exogenous` support completely
X, _ = pm_compat.get_X(X, **kwargs)
if lam2 < 0:
raise ValueError("lmbda2 must be a non-negative scalar value")
if lam1 is None:
y, _ = self._check_y_X(y, X)
_, lam1 = stats.boxcox(y + lam2, lmbda=None, alpha=None)
self.lam1_ = lam1
self.lam2_ = lam2
return self
[docs] def transform(self, y, X=None, **kwargs):
"""Transform the new array
Apply the Box-Cox transformation to the array after learning the
lambda parameter.
Parameters
----------
y : array-like or None, shape=(n_samples,)
The endogenous (time-series) array.
X : array-like or None, shape=(n_samples, n_features), optional
The exogenous array of additional covariates. Not used for
endogenous transformers. Default is None, and non-None values will
serve as pass-through arrays.
Returns
-------
y_transform : array-like or None
The Box-Cox transformed y array
X : array-like or None
The X array
"""
check_is_fitted(self, "lam1_")
# Temporary shim until we remove `exogenous` support completely
X, _ = pm_compat.get_X(X, **kwargs)
lam1 = self.lam1_
lam2 = self.lam2_
y, exog = self._check_y_X(y, X)
y += lam2
neg_mask = y <= 0.
if neg_mask.any():
action = self.neg_action
msg = "Negative or zero values present in y"
if action == "raise":
raise ValueError(msg)
elif action == "warn":
warnings.warn(msg, UserWarning)
y[neg_mask] = self.floor
if lam1 == 0:
return np.log(y), exog
return (y ** lam1 - 1) / lam1, exog
[docs] def inverse_transform(self, y, X=None, **kwargs): # TODO: kwargs go away
"""Inverse transform a transformed array
Inverse the Box-Cox transformation on the transformed array. Note that
if truncation happened in the ``transform`` method, invertibility will
not be preserved, and the transformed array may not be perfectly
inverse-transformed.
Parameters
----------
y : array-like or None, shape=(n_samples,)
The transformed endogenous (time-series) array.
X : array-like or None, shape=(n_samples, n_features), optional
The exogenous array of additional covariates. Not used for
endogenous transformers. Default is None, and non-None values will
serve as pass-through arrays.
Returns
-------
y : array-like or None
The inverse-transformed y array
X : array-like or None
The inverse-transformed X array
"""
check_is_fitted(self, "lam1_")
# Temporary shim until we remove `exogenous` support completely
X, _ = pm_compat.get_X(X, **kwargs)
lam1 = self.lam1_
lam2 = self.lam2_
y, exog = self._check_y_X(y, X)
if lam1 == 0:
return np.exp(y) - lam2, exog
numer = y * lam1 # remove denominator
numer += 1. # add 1 back to it
de_exp = numer ** (1. / lam1) # de-exponentiate
return de_exp - lam2, exog