pmdarima.utils.acf¶
- 
pmdarima.utils.acf(x, unbiased=False, nlags=40, qstat=False, fft=False, alpha=None, missing='none')[source][source]¶
- Calculate the autocorrelation function. - Parameters: - x : array_like - The time series data. - unbiased : bool - If True, then denominators for autocovariance are n-k, otherwise n. - nlags : int, optional - Number of lags to return autocorrelation for. - qstat : bool, optional - If True, returns the Ljung-Box q statistic for each autocorrelation coefficient. See q_stat for more information. - fft : bool, optional - If True, computes the ACF via FFT. - alpha : scalar, optional - If a number is given, the confidence intervals for the given level are returned. For instance if alpha=.05, 95 % confidence intervals are returned where the standard deviation is computed according to Bartlett’s formula. - missing : str, optional - A string in [‘none’, ‘raise’, ‘conservative’, ‘drop’] specifying how the NaNs are to be treated. - Returns: - acf : ndarray - The autocorrelation function. - confint : ndarray, optional - Confidence intervals for the ACF. Returned if alpha is not None. - qstat : ndarray, optional - The Ljung-Box Q-Statistic. Returned if q_stat is True. - pvalues : ndarray, optional - The p-values associated with the Q-statistics. Returned if q_stat is True. - Notes - The acf at lag 0 (ie., 1) is returned. - For very long time series it is recommended to use fft convolution instead. When fft is False uses a simple, direct estimator of the autocovariances that only computes the first nlag + 1 values. This can be much faster when the time series is long and only a small number of autocovariances are needed. - If unbiased is true, the denominator for the autocovariance is adjusted but the autocorrelation is not an unbiased estimator. - References - [R91] - Parzen, E., 1963. On spectral analysis with missing observations and amplitude modulation. Sankhya: The Indian Journal of Statistics, Series A, pp.383-392.