pmdarima.preprocessing.BoxCoxEndogTransformer¶
- 
class pmdarima.preprocessing.BoxCoxEndogTransformer(lmbda=None, lmbda2=0, neg_action='raise', floor=1e-16)[source][source]¶
- Apply the Box-Cox transformation to an endogenous array - The Box-Cox transformation is applied to non-normal data to coerce it more towards a normal distribution. It’s specified as: - (((y + lam2) ** lam1) - 1) / lam1, if lmbda != 0, else log(y + lam2) - Parameters: - lmbda : float or None, optional (default=None) - The lambda value for the Box-Cox transformation, if known. If not specified, it will be estimated via MLE. - lmbda2 : float, optional (default=0.) - The value to add to - yto make it non-negative. If, after adding- lmbda2, there are still negative values, a ValueError will be raised.- neg_action : str, optional (default=”raise”) - How to respond if any values in - y <= 0after adding- lmbda2. One of (‘raise’, ‘warn’, ‘ignore’). If anything other than ‘raise’, values <= 0 will be truncated to the value of- floor.- floor : float, optional (default=1e-16) - A positive value that truncate values to if there are values in - ythat are zero or negative and- neg_actionis not ‘raise’. Note that if values are truncated, invertibility will not be preserved, and the transformed array may not be perfectly inverse-transformed.- Methods - fit(y[, exogenous])- Fit the transformer - fit_transform(y[, exogenous])- Fit and transform the arrays - get_params([deep])- Get parameters for this estimator. - inverse_transform(y[, exogenous])- Inverse transform a transformed array - set_params(**params)- Set the parameters of this estimator. - transform(y[, exogenous])- Transform the new array - 
__init__(lmbda=None, lmbda2=0, neg_action='raise', floor=1e-16)[source][source]¶
- Initialize self. See help(type(self)) for accurate signature. 
 - 
fit(y, exogenous=None)[source][source]¶
- Fit the transformer - Learns the value of - lmbda, if not specified in the constructor. If defined in the constructor, is not re-learned.- Parameters: - y : array-like or None, shape=(n_samples,) - The endogenous (time-series) array. - exogenous : array-like or None, shape=(n_samples, n_features), optional - The exogenous array of additional covariates. Not used for endogenous transformers. Default is None, and non-None values will serve as pass-through arrays. 
 - 
fit_transform(y, exogenous=None, **transform_kwargs)[source]¶
- Fit and transform the arrays - Parameters: - y : array-like or None, shape=(n_samples,) - The endogenous (time-series) array. - exogenous : array-like or None, shape=(n_samples, n_features), optional - The exogenous array of additional covariates. - **transform_kwargs : keyword args - Keyword arguments required by the transform function. 
 - 
get_params(deep=True)[source]¶
- Get parameters for this estimator. - Parameters: - deep : bool, default=True - If True, will return the parameters for this estimator and contained subobjects that are estimators. - Returns: - params : mapping of string to any - Parameter names mapped to their values. 
 - 
inverse_transform(y, exogenous=None)[source][source]¶
- Inverse transform a transformed array - Inverse the Box-Cox transformation on the transformed array. Note that if truncation happened in the - transformmethod, invertibility will not be preserved, and the transformed array may not be perfectly inverse-transformed.- Parameters: - y : array-like or None, shape=(n_samples,) - The transformed endogenous (time-series) array. - exogenous : array-like or None, shape=(n_samples, n_features), optional - The exogenous array of additional covariates. Not used for endogenous transformers. Default is None, and non-None values will serve as pass-through arrays. - Returns: - y : array-like or None - The inverse-transformed y array - exogenous : array-like or None - The inverse-transformed exogenous array 
 - 
set_params(**params)[source]¶
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form - <component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters: - **params : dict - Estimator parameters. - Returns: - self : object - Estimator instance. 
 - 
transform(y, exogenous=None, **_)[source][source]¶
- Transform the new array - Apply the Box-Cox transformation to the array after learning the lambda parameter. - Parameters: - y : array-like or None, shape=(n_samples,) - The endogenous (time-series) array. - exogenous : array-like or None, shape=(n_samples, n_features), optional - The exogenous array of additional covariates. Not used for endogenous transformers. Default is None, and non-None values will serve as pass-through arrays. - Returns: - y_transform : array-like or None - The Box-Cox transformed y array - exogenous : array-like or None - The exog array 
 
- 
