pmdarima.model_selection.cross_val_score¶
- 
pmdarima.model_selection.cross_val_score(estimator, y, exogenous=None, scoring=None, cv=None, verbose=0, error_score=nan)[source][source]¶
- Evaluate a score by cross-validation - Parameters: - estimator : estimator - An estimator object that implements the - fitmethod- y : array-like or iterable, shape=(n_samples,) - The time-series array. - exogenous : array-like, shape=[n_obs, n_vars], optional (default=None) - An optional 2-d array of exogenous variables. - scoring : str or callable, optional (default=None) - The scoring metric to use. If a callable, must adhere to the signature - metric(true, predicted). Valid string scoring metrics include:- ‘smape’
- ‘mean_absolute_error’
- ‘mean_squared_error’
 - cv : BaseTSCrossValidator or None, optional (default=None) - An instance of cross-validation. If None, will use a RollingForecastCV - verbose : integer, optional - The verbosity level. - error_score : ‘raise’ or numeric - Value to assign to the score if an error occurs in estimator fitting. If set to ‘raise’, the error is raised. If a numeric value is given, ModelFitWarning is raised. This parameter does not affect the refit step, which will always raise the error. 
