pmdarima.metrics.smape¶
- 
pmdarima.metrics.smape(y_true, y_pred)[source][source]¶
- Compute the Symmetric Mean Absolute Percentage Error. - The symmetric mean absolute percentage error (SMAPE) is an accuracy measure based on percentage (or relative) errors. Defined as follows: \(\frac{100\%}{n}\sum_{t=1}^{n}{\frac{|F_{t}-A_{t}|}{ (|A_{t}|+|F_{t}|)/2}}\)- Where a perfect SMAPE score is 0.0, and a higher score indicates a higher error rate. - Parameters: - y_true : array-like, shape=(n_samples,) - The true test values of y. - y_pred : array-like, shape=(n_samples,) - The forecasted values of y. - References - [R85] - https://en.wikipedia.org/wiki/Symmetric_mean_absolute_percentage_error - Examples - A typical case: >>> import numpy as np >>> y_true = np.array([0.07533, 0.07533, 0.07533, 0.07533, … 0.07533, 0.07533, 0.0672, 0.0672]) >>> y_pred = np.array([0.102, 0.107, 0.047, 0.1, … 0.032, 0.047, 0.108, 0.089]) >>> smape(y_true, y_pred) 42.60306631890196 - A perfect score: >>> smape(y_true, y_true) 0.0