pmdarima.datasets.load_gasoline¶
- 
pmdarima.datasets.load_gasoline(as_series=False, dtype=<class 'numpy.float64'>)[source][source]¶
- Weekly US finished motor gasoline products - A weekly time series of US finished motor gasoline products supplied (in thousands of barrels per day) from February 1991 to May 2005. - Parameters: - as_series : bool, optional (default=False) - Whether to return a Pandas series. If True, the index will be set to the observed years/months. If False, will return a 1d numpy array. - dtype : type, optional (default=np.float64) - The type to return for the array. Default is np.float64, which is used throughout the package as the default type. - Returns: - rslt : array-like, shape=(n_samples,) - The gasoline dataset. There are 745 examples. - See also - pmdarima.preprocessing.exog.FourierFeaturizer- Notes - The seasonal periodicity of this example is rather difficult, since it’s not an integer. To be exact, the periodicity is - 365.25 / 7(~=52.1785714285714). To fit the best possible model to this data, you’ll need to explore using exogenous features- References - [R74] - http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=wgfupus2&f=W - [R75] - https://robjhyndman.com/hyndsight/forecasting-weekly-data/ - Examples - >>> from pmdarima.datasets import load_gasoline >>> load_gasoline() array([6621. , 6433. , 6582. , ..., 9024. , 9175. , 9269. ]) - >>> load_gasoline(True).head() 0 6621.0 1 6433.0 2 6582.0 3 7224.0 4 6875.0 dtype: float64