pmdarima.arima.PPTest¶
- 
class pmdarima.arima.PPTest(alpha=0.05, lshort=True)[source][source]¶
- Conduct a PP test for stationarity. - In statistics, the Phillips–Perron test (named after Peter C. B. Phillips and Pierre Perron) is a unit root test. It is used in time series analysis to test the null hypothesis that a time series is integrated of order 1. It builds on the Dickey–Fuller test of the null hypothesis - p = 0.- Parameters: - alpha : float, optional (default=0.05) - Level of the test - lshort : bool, optional (default=True) - Whether or not to truncate the - lvalue in the C code.- Notes - This test is generally used indirectly via the - pmdarima.arima.ndiffs()function, which computes the differencing term,- d.- The R code allows for two types of tests: ‘Z(alpha)’ and ‘Z(t_alpha)’. Since sklearn does not allow extraction of std errors from the linear model fit, - t_alphais much more difficult to achieve, so we do not allow that variant.- References - [R64] - R’s tseries PP test source code: http://bit.ly/2wbzx6V - Methods - get_params([deep])- Get parameters for this estimator. - is_stationary(x)- Test whether the time series is stationary. - set_params(**params)- Set the parameters of this estimator. - should_diff(x)- Test whether the time series is stationary or needs differencing. - 
__init__(alpha=0.05, lshort=True)[source][source]¶
- Initialize self. See help(type(self)) for accurate signature. 
 - 
get_params(deep=True)[source]¶
- Get parameters for this estimator. - Parameters: - deep : bool, default=True - If True, will return the parameters for this estimator and contained subobjects that are estimators. - Returns: - params : mapping of string to any - Parameter names mapped to their values. 
 - 
is_stationary(x)[source]¶
- Test whether the time series is stationary. - Parameters: - x : array-like, shape=(n_samples,) - The time series vector. - Returns: - pval : float - The computed P-value of the test. - sig : bool - Whether the P-value is significant at the - alphalevel. More directly, whether to difference the time series.
 - 
set_params(**params)[source]¶
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form - <component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters: - **params : dict - Estimator parameters. - Returns: - self : object - Estimator instance. 
 - 
should_diff(x)[source][source]¶
- Test whether the time series is stationary or needs differencing. - Parameters: - x : array-like, shape=(n_samples,) - The time series vector. - Returns: - pval : float - The computed P-value of the test. - sig : bool - Whether the P-value is significant at the - alphalevel. More directly, whether to difference the time series.
 
-