.. _sphx_glr_auto_examples_example_pipeline.py: ========================= Pipelines with auto_arima ========================= Like scikit-learn, ``pmdarima`` can fit "pipeline" models. That is, a pipeline constitutes a list of arbitrary length comprised of any number of ``BaseTransformer`` objects strung together ordinally, and finished with an ``AutoARIMA`` object. The benefit of a pipeline is the ability to condense a complex sequence of stateful transformations into a single object that can call ``fit``, ``predict`` and ``update``. It can also be serialized into *one* pickle file, which greatly simplifies your life. .. raw:: html
.. image:: /auto_examples/images/sphx_glr_example_pipeline_001.png :align: center .. rst-class:: sphx-glr-script-out Out:: pmdarima version: 0.0.0 Performing stepwise search to minimize aic Fit ARIMA(2,1,2)x(0,0,0,0) [intercept=True]; AIC=2819.938, BIC=2861.993, Time=0.484 seconds Fit ARIMA(0,1,0)x(0,0,0,0) [intercept=True]; AIC=2942.625, BIC=2972.664, Time=0.026 seconds Fit ARIMA(1,1,0)x(0,0,0,0) [intercept=True]; AIC=2867.514, BIC=2900.557, Time=0.069 seconds Fit ARIMA(0,1,1)x(0,0,0,0) [intercept=True]; AIC=2830.585, BIC=2863.628, Time=0.366 seconds Fit ARIMA(0,1,0)x(0,0,0,0) [intercept=False]; AIC=2940.651, BIC=2967.686, Time=0.118 seconds Fit ARIMA(1,1,2)x(0,0,0,0) [intercept=True]; AIC=2817.535, BIC=2856.586, Time=0.376 seconds Fit ARIMA(0,1,2)x(0,0,0,0) [intercept=True]; AIC=2814.904, BIC=2850.952, Time=0.341 seconds Fit ARIMA(0,1,3)x(0,0,0,0) [intercept=True]; AIC=2818.704, BIC=2857.755, Time=0.527 seconds Fit ARIMA(1,1,1)x(0,0,0,0) [intercept=True]; AIC=2817.377, BIC=2853.424, Time=0.334 seconds Fit ARIMA(1,1,3)x(0,0,0,0) [intercept=True]; AIC=2818.290, BIC=2860.345, Time=0.598 seconds Near non-invertible roots for order (1, 1, 3)(0, 0, 0, 0); setting score to inf (at least one inverse root too close to the border of the unit circle: 1.000) Total fit time: 3.254 seconds Model fit: Pipeline(steps=[('fourier', FourierFeaturizer(k=4, m=12)), ('arima', AutoARIMA(error_action='ignore', seasonal=False, suppress_warnings=True, trace=1))]) Forecasts: [28518.77767228 29963.38441559 25827.05456596 25060.78046603 34235.8019525 33509.06300578 21083.18267848 19764.88570594 25895.79468881 25434.06369412] [26536.08275776 34421.901483 33695.15536964 21269.27342727 19950.98131732 26081.88981551 25620.15609753 24414.25585264 26098.85088839 28871.61206751 30770.63509211] | .. code-block:: python print(__doc__) # Author: Taylor Smith import numpy as np import pmdarima as pm from pmdarima import pipeline from pmdarima import model_selection from pmdarima import preprocessing as ppc from pmdarima import arima from matplotlib import pyplot as plt print("pmdarima version: %s" % pm.__version__) # Load the data and split it into separate pieces data = pm.datasets.load_wineind() train, test = model_selection.train_test_split(data, train_size=150) # Let's create a pipeline with multiple stages... the Wineind dataset is # seasonal, so we'll include a FourierFeaturizer so we can fit it without # seasonality pipe = pipeline.Pipeline([ ("fourier", ppc.FourierFeaturizer(m=12, k=4)), ("arima", arima.AutoARIMA(stepwise=True, trace=1, error_action="ignore", seasonal=False, # because we use Fourier suppress_warnings=True)) ]) pipe.fit(train) print("Model fit:") print(pipe) # We can compute predictions the same way we would on a normal ARIMA object: preds, conf_int = pipe.predict(n_periods=10, return_conf_int=True) print("\nForecasts:") print(preds) # Let's take a look at the actual vs. the predicted values: fig, axes = plt.subplots(3, 1, figsize=(12, 8)) fig.tight_layout() # Visualize goodness of fit in_sample_preds, in_sample_confint = \ pipe.predict_in_sample(exogenous=None, return_conf_int=True) n_train = train.shape[0] x0 = np.arange(n_train) axes[0].plot(x0, train, alpha=0.75) axes[0].scatter(x0, in_sample_preds, alpha=0.4, marker='x') axes[0].fill_between(x0, in_sample_confint[:, 0], in_sample_confint[:, 1], alpha=0.1, color='b') axes[0].set_title('Actual train samples vs. in-sample predictions') axes[0].set_xlim((0, x0.shape[0])) # Visualize actual + predicted x1 = np.arange(n_train + preds.shape[0]) axes[1].plot(x1[:n_train], train, alpha=0.75) # axes[1].scatter(x[n_train:], preds, alpha=0.4, marker='o') axes[1].scatter(x1[n_train:], test[:preds.shape[0]], alpha=0.4, marker='x') axes[1].fill_between(x1[n_train:], conf_int[:, 0], conf_int[:, 1], alpha=0.1, color='b') axes[1].set_title('Actual test samples vs. forecasts') axes[1].set_xlim((0, data.shape[0])) # We can also call `update` directly on the pipeline object, which will update # the intermittent transformers, where necessary: newly_observed, still_test = test[:15], test[15:] pipe.update(newly_observed, maxiter=10) # Calling predict will now predict from newly observed values new_preds = pipe.predict(still_test.shape[0]) print(new_preds) x2 = np.arange(data.shape[0]) n_trained_on = n_train + newly_observed.shape[0] axes[2].plot(x2[:n_train], train, alpha=0.75) axes[2].plot(x2[n_train: n_trained_on], newly_observed, alpha=0.75, c='orange') # axes[2].scatter(x2[n_trained_on:], new_preds, alpha=0.4, marker='o') axes[2].scatter(x2[n_trained_on:], still_test, alpha=0.4, marker='x') axes[2].set_title('Actual test samples vs. forecasts') axes[2].set_xlim((0, data.shape[0])) plt.show() **Total running time of the script:** ( 0 minutes 3.455 seconds) .. only :: html .. container:: sphx-glr-footer .. container:: sphx-glr-download :download:`Download Python source code: example_pipeline.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: example_pipeline.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_